పరమాణు సిద్ధాంతం

529

ప్రస్తుతం చలామణీలో ఉన్న పరమాణువు సిద్ధాంత పరమైన నమూనా. ఇందులో మధ్యలో దట్టంగా ఉండే కేంద్రకం, దాని చుట్టూ ఎలక్ట్రాన్ల మేఘం (సంభావ్యతా మేఘం) ఉంటాయి. భౌతిక రసాయనిక శాస్త్రాల్లో పరమాణు సిద్ధాంతం అంటే పదార్థం లక్షణాల్ని వివరించే ఒక సిద్ధాంతం. ఈ సిద్ధాంతం ప్రకారం విశ్వంలోని పదార్థాలన్నీ విభజించడానికి వీలు కాని పరమాణువులతో కూడుకొని ఉంటాయి. ఇది పురాతన గ్రీసు దేశంలో తత్వ శాస్త్ర భావనగా మొదలై 19వ శతాబ్దం మొదట్లో శాస్త్రీయ పరిశోధనా పరిధిలోకి వచ్చింది. పరమాణువుకు సమానార్థమైన ఆంగ్లపదం ఆటం ప్రాచీన గ్రీకు పదం అటామస్ అనే పదం నుంచి వచ్చింది. ఈ పదానికి విభజించడానికి వీలు లేనిది అని అర్థం. 19వ శతాబ్దానికి చెందిన రసాయనిక శాస్త్రవేత్తలు, ఇక విడగొట్టలేనంత సూక్ష్మంగా ఉన్న కొన్ని పదార్థాలను ఈ పేరుతో పిలవడం ప్రారంభించారు.

20వ శతాబ్దం మొదలయ్యే నాటికి విద్యుదయస్కాంతత్వం, రేడియో ధార్మికత మొదలైన వాటిమీద పరిశోధనలు చేస్తూ అసలు విభజించడానికి వీలులేని పరమాణువులు ఉంటాయని కనుగొన్నారు. కానీ వీటిలో కూడా ఎలక్ట్రాన్లు, న్యూట్రానులు, ప్రోటానులు అనే కణాలు కలగలిసిపోయి ఉంటాయని కూడా నిరూపించారు. ఇంకా చెప్పాలంటే అత్యధిక ఉష్టోగ్రత, అత్యధిక పీడనం ఉన్న కొన్ని విపరీత పరిస్థితుల్లో (న్యూట్రాన్ స్టార్స్‌లో) అసలు పరమాణువులు ఉండే అవకాశమే లేదని కూడా కనుగొన్నారు. పరమాణువులను కూడా విభజించగలమని తేలడంతో భౌతిక శాస్త్రవేత్తలు పరమాణువులో ఉన్న విడగొట్టడానికి వీలుకాని కణాలను ప్రాథమిక కణాలు అని పిలిచారు. ఈ కణాల గురించి అధ్యయనం చేసే శాస్త్రాన్ని కణ భౌతికశాస్త్రం అని వ్యవహరిస్తారు. ఈ విభాగంలో భాగంగా శాస్త్రజ్ఞులు అసలు పదార్థం తత్వాన్ని ఆవిష్కరించడానికి ప్రయత్నిస్తున్నారు.

పదార్థాలన్నీ ఏదో కొన్ని విడి భాగాల కలయికతో ఏర్పడిందనేది చాలా ప్రాచీనమైన భావన. ఇది పురాతన గ్రీసు, భారతీయ సంస్కృతుల్లో కనిపిస్తుంది. ఆటం అనే ప్రాచీన గ్రీకు పదానికి విడగొట్టడానికి వీలు లేనిది అని అర్థం. ఈ పదం సోక్రటీసు కంటే ముందే ల్యూసిపస్, అతని శిష్యుడైన డెమోక్రిటస్ సా.పూ 460- 370 మధ్యలోనే ఉపయోగించారు. పరమాణువులు సంఖ్య అనంతమనీ, వాటిని ఎవరూ సృష్టించలేదనీ, శాశ్వతంగా ఉండిపోయేవని, ఒక వస్తువు లక్షణాలు దానిని కూర్చే పరమాణువుల మీద ఆధారపడి ఉంటుందని డెమోక్రిటస్ బోధించాడు. తరువాత గ్రీకు తత్వవేత్త ఎపిక్యురస్ (సా. పూ. 341 – 270), రోమన్ ఎపిక్యురియన్ కవిలు క్రీషియస్ (క్రీ.పూ. 99 – సి. 55 బి.సి) డెమోక్రిటస్ పరమాణువాదాన్ని మరికొంత మెరుగుపరిచి విశదీకరి౦చారు. అయితే, మధ్య యుగ ఆరంభంలో పశ్చిమ ఐరోపా, పరమాణువాదాన్ని మరచిపోయింది. 12వ శతాబ్దంలో అరిస్టాటిల్ పాతరచనలను ఆధారంగా పేర్కొంటూ చేసిన రచనలతో పరమాణువాదం మళ్ళీ పశ్చిమ ఐరోపాలో వెలుగులోకి వచ్చింది.

14వ శతాబ్దంలో, లుక్రీషియస్ రాసిన డి రెరం నాచురా, డయోజెనెస్ లియేటియస్ రాసిన లైవ్స్ అండ్ ఒపీనియన్స్ ఆఫ్ ఎమినెంట్ ఫిలాసఫర్స్ లాంటి రచనలవల్ల పండితుల దృష్టి ఈ శాస్త్రం మీదకు ప్రసరించింది. ఏదేమైనా పరమాణువాదం సనాతన క్రైస్తవ బోధనలతో విభేదించే ఎపిక్యురియనిజమ్ అనే తత్వశాస్త్ర భావన కాబట్టి, చాలా మంది యూరోపియన్ తత్వవేత్తలు దీనిని అంగీకరించలేదు. ఫ్రెంచి కేథలిక్ పూజారి పియరీ గ్యాసేన్డి (1592 – 1655) ఎపిక్యురియన్ పరమాణువాదాన్ని కొన్ని మార్పులతో పునరుద్ధరించాడు. ఈ సిద్ధాంతం ప్రకారం పరమాణువులు దేవునిచే సృష్టించి చాలా అసంఖ్యాకంగా ఉన్నప్పటికీ, అవి అనంతం కావని ఆయన పేర్కొన్నాడు. గ్యాస్సెండి సవరించిన పరమాణు సిద్ధాంతాన్ని ఫ్రాన్స్‌లో వైద్యుడు ఫ్రాంకోయిస్ బెర్నియర్ (1620 – 1688), ఇంగ్లాండ్‌లో సహజ తత్వవేత్త వాల్టర్ చార్లెటన్ (1619 – 1707) ప్రాచుర్యంలోకి తెచ్చారు. రసాయన శాస్త్రవేత్త రాబర్ట్ బాయిల్ (1627 – 1691), భౌతిక శాస్త్రవేత్త ఐజాక్ న్యూటన్ (1642 – 1727) ఇద్దరూ పరమాణువాదాన్ని సమర్థించారు. 17వ శతాబ్దం చివరినాటికి, ఇది శాస్త్రీయ సమాజంలోని కొన్ని వర్గాల ఆమోదం పొందింది.

18వ శతాబ్దం చివరిలో, పరమాణు సిద్ధాంతాలతో సంబంధం లేకుండా రసాయన చర్యల గురించి రెండు నియమాలు సూత్రీకరించబడ్డాయి. మొదటిది ద్రవ్యనిత్యత్వ నియమం. ఇది ఆంటోనీ లావోయిజర్ పనితో దగ్గరి సంబంధం కలిగి ఉంది. రసాయన ప్రతిచర్యలో మొత్తం ద్రవ్యరాశి స్థిరంగా ఉంటుందని ఇది పేర్కొంది (అంటే చర్యలో పాల్గొనే క్రియాజనకాలు, వాటి ఉత్పత్తులు ఒకే ద్రవ్యరాశి కలిగి ఉంటాయి). రెండవది నియత నిష్పత్తి నియమం. 1799లో ఫ్రెంచ్ రసాయన శాస్త్రవేత్త జోసెఫ్ లూయిస్ ప్రౌస్ట్ మొదట ప్రతిపాదించిన ఈ సూత్రం ప్రకారం, ఒక సమ్మేళనం, దానిలోని రసాయన మూలకాలుగా విభజిస్తే అసలు పదార్థ పరిమాణం లేదా మూలంతో సంబంధం లేకుండా, విడిపోయిన భాగాల ద్రవ్యరాశి ఎల్లప్పుడూ ఒకే నిష్పత్తిలో ఉంటుంది. జాన్‌ డాల్టన్ ముందు ప్రతిపాదించిన ఈ నియమాలను అధ్యయనం చేసి గుణిజ నిష్పత్తి నియమం అనే కొత్త నియమాన్ని ఏర్పాటుచేశాడు. రెండు ఒకేరకమైన మూలకాలను కలిపి వివిధ రకాలైన సమ్మేళనాలను తయారు చేయగలిగితే ఆ వివిధ సమ్మేళనాల్లోని రెండు మూలకాల ద్రవ్యరాశుల నిష్పత్తిని చిన్న పూర్ణ సంఖ్యలతో సూచించవచ్చు. రసాయనిక చర్యల్లో ఈ విధంగా జరగడం డాల్టనే కాక ఇతర శాస్త్రవేత్తలు కూడా గమనించారు.

ఆక్సిజన్ కొద్ది పరిమాణంలోని నైట్రస్ ఆక్సైడ్‌తో కలిసి నైట్రిక్ ఆమ్లం ఏర్పడుతున్నట్టు, రెట్టింపు పరిమాణం నైట్రస్ ఆక్సైడ్‌తో 1:2 నిష్పత్తిలో కలిసి నైట్రస్ ఆమ్లం ఏర్పడుతున్నట్లు డాల్టన్ గుర్తించాడు. జోసెఫ్ ప్రౌస్ట్ 100 పాళ్ళు ఇనుము 28 లేదా 42 భాగాలు ఆక్సిజన్‌తో కలిసి (2:3 నిష్పత్తి) ; 119 పాళ్ళు 16 లేదా 32 ఆక్సిజన్ పాళ్ళలో కలుస్తున్నట్లు గుర్తించాడు (1:2 నిష్పత్తి). పరమాణు సిద్ధాంతం ఈ ధర్మాన్ని వివరించడానికి, ప్రౌస్ట్ ప్రతిపాదించిన నియత నిష్పత్తి నియమాన్ని వివరించడానికి సరిపోతుందని కనుగొన్నాడు. ప్రౌస్ట్ కనుగొన్న టిన్ ఆక్సైడ్ చర్యల్లో ఒక టిన్ అణువు ఒకటి లేదా రెండు ఆక్సిజన్ అణువులతో కలిసి రెండు రకాలైన ఆక్సైడులను ఏర్పరుస్తున్నట్లుగా గమనించాడు.

నీరు వివిధ రకాలైన వాయువులను వివిధ పాళ్ళలో ఎందుకు శోషించుకుంటుందో తెలిపేందుకు పరమాణు సిద్ధాంతం ఉపకరిస్తుందని డాల్టన్ విశ్వసించాడు. ఉదాహరణకు నీటిలో నైట్రోజన్ కన్నా కార్బన్ డయాక్సైడ్ బాగా కలుస్తుందని కనుగొన్నాడు. ఇది వాయువుల ద్రవ్యరాశిలో తేడా వల్ల ఇంకా వాటిలోని పరమాణు సంక్లిష్టత వల్ల అయ్యుండవచ్చునని డాల్టన్ సూత్రీకరించాడు. నిజానికి కార్బన్ డయాక్సైడ్ అణు సముదాయం నైట్రోజన్ అణు సముదాయం కన్నా బరువైనది, పెద్దది. ప్రతి రసాయనిక మూలకం ఒకే రకమైన పరమాణువులతో తయారై ఉంటుందనీ, వాటిని రసాయనికంగా మార్చలేకపోయినా లేదా నాశనం చేయలేక పోయినా వేర్వేరు మూలకాలు కలిసి రసాయన సమ్మేళనాలనే సంక్లిష్ట నిర్మాణాలు ఏర్పడవచ్చని డాల్టన్ ప్రతిపాదించాడు. పరమాణు వాదం ఒక సిద్ధాంతంగా గుర్తించడానికి ఈ ప్రతిపాదనలు మైలురాయిగా చెప్పవచ్చు. ఎందుకంటే ఈ ప్రతిపాదనలన్నీ డాల్టన్ ప్రయోగాత్మకంగా పరిశీలించి నిర్ధారణ చేసినవి.

జాన్ డాల్టన్ ఎ న్యూ సిస్టం ఆఫ్ కెమికల్ ఫిలాసఫీ (1808)లో పేర్కొన్న వివిధ పరమాణువులు, వాటి సముదాయాలు. డాల్టన్ 1803లో వివిధ పదార్థాల సాపేక్ష పరమాణుభారాల మొదటి జాబితా వెలువరించాడు. ఈ పరిశోధనా పత్రం 1805లో ప్రచురితమైంది. కానీ అందులో బరువులను ఎలా వచ్చాయో మాత్రం వివరించలేదు. 1807లో డాల్టన్‌కు పరిచయస్తుడైన థామస్ థామ్సన్ ఈ పద్ధతిని వెల్లడించాడు. థామ్సన్ పుస్తకం ఎ సిస్టం ఆఫ్ కెమిస్ట్రీ, మూడో సంచికలో డాల్టన్ తన స్వంత పుస్తకమైన ఎ న్యూ సిస్టం ఆఫ్ కెమికల్ ఫిలాసఫీ (1808, 1810) గురించి పూర్తి వివరాలు వెల్లడించాడు. పరమాణువులు ఏయే పాళ్ళలో కలుస్తాయో దాన్ని బట్టి వాటి పరమాణుభారాలను అంచనా వేసినట్టు డాల్టన్ తెలియజేశాడు. ఇందులో హైడ్రోజన్ పరమాణువును ఒక ప్రమాణంగా తీసుకున్నారు. కానీ కొన్ని పరమాణువులు సముదాయాలుగానే ఎందుకుంటాయన్నది డాల్టన్ వివరించలేదు. ఉదాహరణకు స్వచ్ఛమైన ఆక్సిజన్ ఎప్పుడూ రెండు పరమాణువుల సముదాయంలానే ఉంటుంది.

అంతే కాకుండా అత్యంత సరళమైన అణువు ఎప్పుడూ రెండు వేర్వేరు పరమాణువులతోనే ఏర్పడుతుందని తప్పుగా ఊహించాడు. (అంటే నీరు హెచ్2O కాకుండా హెచ్ఓ రూపంలో ఉంటుందని ఊహించాడు). అప్పట్లో ఉన్న పాత తరం పరికరాలు కూడా ఆయన ఫలితాలను కొంచెం తప్పుగా చూపించాయి. ఉదాహరణకు 1803లో ఆయన ఆక్సిజన్ పరమాణువులు హైడ్రోజన్ పరమాణువుల కన్నా 5.5 రెట్లు భారంగా ఉంటాయని లెక్కలు వేశాడు. ఎందుకంటే నీళ్ళలో ఒక గ్రాము హైడ్రోజెన్‌కి 5.5 గ్రాములు ఆక్సిజన్ ఉన్నట్లు కొలత వేశాడు. దాన్ని బట్టే నీటిని హెచ్ఓ అని సూచించాడు. ఇంకొంచెం మెరుగైన డేటా దొరకగానే ఆక్సిజన్ బరువు 5.5 కాదనీ, 7 ఉంటుందని అనుకుని జీవితాంతం అలాగే పరిశోధన చేశాడు. కానీ ఇతరులు మాత్రం నీటి రసాయనిక ఫార్ములా హెచ్ఓ అనుకుంటే హైడ్రోజన్ పరమాణుభారం 1, ఆక్సిజన్ పరమాణుభారం 8 లేదా నీటి రసాయనిక ఫార్ములా హెచ్20 అనుకుంటే హైడ్రోజన్ పరమాణుభారం 1, ఆక్సిజన్ పరమాణుభారం 16 ఉంటుందని నిర్ధారించుకున్నారు.

డాల్టన్ సిద్ధాంతంలోని పొరపాట్లని అమీడియో అవగాడ్రో 1811లో సవరించాడు. ఈయన ప్రతిపాదన ప్రకారం ఒకే పరిమాణం కలిగిన ఏ రెండు వాయువుల్లో అయినా, సమాన ఉష్ణోగ్రత, సమాన పీడనం ఉన్నపుడు సమానమైన పరమాణు సముదాయాలు ఉంటాయి. మరో విధంగా చెప్పాలంటే వాయు అణువుల ద్రవ్యరాశి అవి ఆక్రమించే పరిమాణం మీద ఆధారపడదు. ఆయన ప్రతిపాదించిన అవగాడ్రో నియమం కొన్ని వాయువులు ఒక పరిమాణం వద్ద చర్య పొంది రెండు పరమాణువుల సముదాయంగా మారడాన్ని వివరించేందుకు వీలు కల్పించింది. ఉదాహరణకు ఒకేరకమైన ఉష్ణోగ్రత, పీడనం వద్ద రెండు లీటర్ల హైడ్రోజన్ ఒక లీటరు ఆక్సిజన్ తో కలిసి రెండు లీటర్ల నీటి ఆవిరిని ఉత్పత్తి చేస్తుంది. అంటే ఒక ఆక్సిజన్ అణువు (02) రెండు పరమాణువులుగా విడిపోయి రెండు హైడ్రోజన్ పరమాణువులతో కలిసి రెండు నీటి కణాలుగా మారింది. ఆ విధంగా అవగాడ్రో ఆక్సిజన్, ఇతర మూలకాల పరమాణు ద్రవ్యరాశులను మరింత కచ్చితంగా అంచనా వేసి, పరమాణువులకు, అణువులకు మధ్య అంతరాన్ని వివరించగలిగాడు.

1827లో ఆంగ్ల వృక్ష శాస్త్రవేత్తయైన రాబర్ట్ బ్రౌన్ పుప్పొడి రేణువులు నీటిపై తేలుతున్నపుడు వాటిలో ఉన్న ధూళి కణాలు ఎటువంటి కారణం లేకుండానే అటూ ఇటూ కదులుతూండడం గమనించాడు. 1905లో ఆల్బర్ట్ ఐన్‌స్టీన్ ఈ బ్రౌనియన్ చలనాలు నీటి అణువుల సముదాయం వీటిని తరచూ ఢీకొడుతూ ఉండటం వల్ల ఏర్పడతాయని సిద్ధాంతీకరించాడు. దీన్ని వివరించడానికి ఆయన ఒక గణిత నమూనా కూడా తయారు చేశాడు. ఈ నమూనా 1908లో ఫ్రెంచి భౌతిక శాస్త్రవేత్త జీన్ పెరిన్ చేసిన ప్రయోగంలో నిర్ధారణ అయింది. ఇదే పరమాణు సిద్ధాంతానికి అనుబంధంగా కణ సిద్ధాంతానికి దారితీసింది. క్యాథోడ్ కిరణాలు (నీలం) క్యాథోడ్ నుండి వెలువడి, సన్నని చీలిక మార్గం గుండా ప్రయాణించడం ద్వారా పుంజంగా మారి, రెండు విద్యుత్ ఫలకాల మద్యనుంచి ప్రయాణిస్తున్నపుడు విక్షేపం అవుతాయి.

1897 వరకు పరమాణువులే అత్యంత సూక్ష్మమైనవిగా, వాటిని విభజించలేని వాటిగా భావిస్తూ ఉండేవారు. అప్పుడు జె. జె. థామ్సన్ అనే శాస్త్రవేత్త క్యాథోడ్ కిరణాల మీద ప్రయోగం చేస్తూ ఎలక్ట్రాన్‌ని కనుగొన్నాడు. క్రూక్స్ ట్యూబ్ అనేది ఒక మూతవేసిన గాజు గొట్టం. ఇందులో రెండు ఎలక్ట్రోడులు, మధ్య శూన్యం ఆవరించి ఉంటుంది. వాటి మధ్య వోల్టేజి పంపినపుడు క్యాథోడ్ కిరణాలు ఉత్పన్నం అవుతాయి. ఇవి వెలుగులీనుతూ గొట్టం వ్యతిరేకదిశలో ఉన్న గాజును తాకుతాయి. ప్రయోగాల ద్వారా ఈ కిరణాలను విద్యుత్ మండలం సహాయంతో దారి మళ్ళించవచ్చని నిరూపించాడు. (అయస్కాంత మండలంతో కూడా చేయవచ్చని ఇదివరకే నిరూపితమైంది). ఈ కిరణాలు కేవలం కాంతి కిరణాలే కాక రుణావేశం కలిగిన కణాలు కలిగిన కార్పసిల్స్ (సూక్ష్మ కణాలు) అయి ఉంటాయని నిర్ధారించాడు. తర్వాత శాస్త్రవేత్తలు వీటికి ఎలక్ట్రాన్లు అని పేరు పెట్టారు. అతను ద్రవ్యరాశి-ఆవేశం నిష్పత్తిని కొలిచి ఈ కణాలు అతి చిన్న పరమాణువైన హైడ్రోజన్ పరమాణువుకన్నా 1800 రెట్లు చిన్నది అని నిరూపించాడు. ఈ కణాల గురించి అప్పటి దాకా ఎవరికీ తెలియదు. అలా థామ్సన్, పరమాణువులను కూడా విభజించగలమనీ, వాటితోనే పరమాణువులు ఏర్పడ్డాయనీ ఊహించాడు.

కానీ పరమాణువు మొత్తం తటస్థ ఆవేశం కలిగుంటుంది కదా, అందుకోసం ప్లమ్ పుడ్డింగ్ నమూనా ప్రతిపాదించారు. ఈ నమూనా ప్రకారం ఎలక్ట్రాన్లు ధనాత్మక ఆవేశం కలిగిన ఒక ముద్దలో ఎలక్ట్రాన్లు అక్కడక్కడ అమర్చినట్లు ఉంటాయని ప్రతిపాదించాడు. ఎలక్ట్రాన్లు పాయసంలో వేసిన ఎండుద్రాక్షలవలె వెదజల్లినట్లు ఉంటాయి కాబట్టి దీన్ని ప్లమ్ పుడ్డింగ్ నమూనా అని పిలిచారు. (కానీ థాంసన్ నమూనా ప్రకారం ఎలక్ట్రాన్లు స్థిరంగా ఉండవు). ప్లం పుడ్డింగ్ పరమాణు నమూనా గుండా ఆల్ఫా కణాలు ప్రయాణించి అతి స్వల్పమైన విక్షేపానికి గురవడం. కేంద్రకంలో ముద్దలా ఉన్న ధనావేశానికి గురై కొన్ని ఆల్ఫా కణాలు విక్షేపం చెందాయి. థామ్సన్ ప్రతిపాదించిన ప్లమ్ పుడ్డింగ్ నమూనాను 1909లో అతని పూర్వ విద్యార్థుల్లో ఒకరైన ఎర్నెస్ట్ రూథర్‌ఫోర్డ్ తప్పని నిరూపించాడు. ఈయన పరమాణువు ద్రవ్యరాశిలోను, దాని ధనావేశంలోనూ చాలాభాగం, మొత్తం పరిమాణంలో అతికొద్ది భాగంలో, అది కూడా పరమాణువు మధ్యలో కేంద్రీకృతమైనట్లు భావించాడు.

రూథర్ ఫోర్డ్, ఇంకా అతని సహ పరిశోధకులైన హాన్స్ గైగర్, ఎర్నెస్ట్ మార్స్‌డెన్ ఆల్ఫా కణాల (ఇవి రేడియం లాంటి అణుధార్మిక పదార్థాల నుండి వెలువడే ధనావేశ కణాలు) ద్రవ్యరాశి- ఆవేశం మధ్య నిష్పత్తిని కనుగొనడానికి ఒక పరికరం తయారు చేస్తుండగా వీరికి థామ్సన్ నమూనా మీద సందేహాలు ఏర్పడ్డాయి. పరిశోధనా గదిలో ఆల్ఫా కణాలు గాలికి చెల్లాచెదురవడం వల్ల వీరు నమోదు చేసే కొలతలు స్థిరంగా రాలేదు. థామ్సన్ కూడా తాను క్యాథోడ్ కిరణాలపై ప్రయోగం చేసే సమయంలో ఇలాంటి సమస్యనే ఎదుర్కొన్నాడు. అయితే ఈ సమస్యను అధిగమించడం కోసం తన పరికరాల్లో దాదాపు శూన్య పరిస్థితిని కల్పించాడు. రూథర్ ఫోర్డ్ మాత్రం తన ప్రయోగంలో ఇలాంటి సమస్య వస్తుందని అనుకోలేదు ఎందుకంటే ఆల్ఫా కణాలు ఎలక్ట్రాన్ల కన్నా చాలా బరువైనవి. థామ్సన్ పరమాణు నమూనా ప్రకారం, పరమాణువులోని ధనావేశం ఆల్ఫా కణాన్ని దారి మళ్ళించగల దట్టంగా విద్యుత్ క్షేత్రంగా విస్తరించలేదు. ఎలక్ట్రాన్లు ఎటూ తేలికైనవి కాబట్టి వాటికంటే చాలా బరువైన ఆల్ఫా కణాలు ఎటూ వాటిని పక్కకు నెట్టివేస్తాయి. అయినప్పటికీ ఆల్ఫా కణాలు విక్షేపం చెందాయి. కాబట్టి రూథర్‌ఫోర్డ్, అతని అనుచరులు ఈ విక్షేపాన్ని ఇంకా లోతుగా పరీక్షించాలనుకున్నారు. ఈ ప్రయోగంలో సన్నని లోహపు రేకుమీదకు ఆల్ఫా కణాలు ప్రయోగించి అవి ప్రతిదీప్తి తెర ద్వారా అవి ఎంతమేరకు విక్షేపం చెందాయో గమనించారు.

ఎలక్ట్రాన్ల ద్రవ్యరాశి అతి స్వల్పం, ఆల్ఫా కణాల ఉరవడి ఎక్కువ, ప్లమ్ పుడ్డింగ్ నమూనా ప్రకారం ధనావేశ గాఢత తక్కువ కాబట్టి ఈ ప్రయోగంలో అన్ని ఆల్ఫా కణాలు పెద్దగా విక్షేపం చెందకుండా లోహపు రేకు గుండా దూసుకుపోతాయని భావించారు. కానీ వారి ఆలోచనలు పటాపంచలు చేస్తూ కొన్ని ఆల్ఫా కణాలు బాగా విక్షేపం చెందాయి. దీని ఆధారంగా రూథర్ ఫోర్డ్ పరమాణువులోని ధనావేశం అతి తక్కువ పరిమాణంలో కేంద్రీకృతమై ఆల్ఫా కణాలు బలంగా విక్షేపం చెందడానికి కారణమై ఉండాలని భావించాడు. 1909, 1913 మధ్యలో రూథర్‌ఫోర్డ్, అతని సహచరులు వరుసగా కొన్ని ప్రయోగాలు చేశారు. ఈ ప్రయోగంలో సన్నని లోహపు రేకుమీదకు ఆల్ఫా కణాలు ప్రయోగించి అవి ప్రతిదీప్తి తెర ద్వారా అవి ఎంతమేరకు విక్షేపం చెందాయో గమనించారు. అందులో ఆల్ఫా కణాలు 90 డిగ్రీల కంటే ఎక్కువ విక్షేపం చెందడాన్ని గమనించారు. దీన్ని వివరించడానికి రూథర్‌ఫోర్డ్ ఒక పరమాణువులోని ధనావేశం థామ్సన్ ఊహించినట్టుగా పరమాణువు అంతటా వ్యాపించి ఉండదనీ, పరమాణువు మధ్యలో ఒక సూక్ష్మ భాగంలో కేంద్రీకృతమై ఉంటుందనీ, అప్పుడే దానికి ఆల్ఫాకణాలను విక్షేపం చేసేంత బలమైన విద్యుత్ క్షేత్రాన్ని ఏర్పాటు చేసే అవకాశం ఉంటుందనీ తెలిపాడు. గ్రహాల నమూనాలు ముఖ్యంగా రెండు దోషాలు ఉన్నాయి. మొదటిది సూర్యుడు చుట్టూ తిరిగే గ్రహాల వలె కాకుండా ఎలక్ట్రాన్లు ఋణ విద్యుదావేశం కలిగిన కణాలు. సాంప్రదాయ విద్యుదయస్కాంతత్వంలోని లార్మర్ నియమం ప్రకారం కదులుతూ ఉండే విద్యుత్ ఆవేశం నుంచి విద్యుత్ అయస్కాంత తరంగాలు వెలువడాలి. అలా తిరుగుతున్న విద్యుత్ ఆవేశం క్రమంగా శక్తి నశించి కేంద్రకంలో పడిపోయి క్షణంలో అంతరించి పోవాలి. రెండోది, గ్రహాల నమూనా పరమాణువు నుంచి వెలువడే ఉద్గారాలను, శోషణ వర్ణపటాల గురించి వివరించలేకపోయింది.

20 శతాబ్దం మొదట్లో మాక్స్ ప్లాంక్, ఆల్బర్ట్ ఐన్‌స్టీన్ కాంతి ఉద్గారం, శోషణ క్వాంటం అనే కొన్ని ప్రత్యేక పరిమాణాల్లో జరుగుతుందని సూత్రీకరించారు. ఈ క్వాంటం సిద్ధాంతం భౌతిక శాస్త్రాన్ని కొత్త పుంతలు తొక్కించింది. 1913లో దీని ఆధారంగా నీల్స్‌ బోర్, బోర్ నమూనాని ప్రతిపాదించాడు. దీని ప్రకారం ఎలక్ట్రాన్లు కేంద్రకం చుట్టూ ఒక స్థిరమైన కోణీయ త్వరణం, శక్తితో నిర్దిష్టమైన కక్ష్యలో తిరుగుతుంటాయి. కేంద్రకం నుంచి వాటి కున్న దూరం (వ్యాసార్థం) వాటి శక్తికి అనులోమానుపాతంలో ఉంటుంది. ఈ నమూనాలో ఎలక్ట్రాన్ క్రమంగా కేంద్రకంలో పడిపోదు ఎందుకంటే అది ఎప్పుడూ శక్తిని కోల్పోతూనే ఉండదు. అందుకు భిన్నంగా కొన్ని స్థిరమైన శక్తి స్థాయిల్లో మారుతూ ఉంటుంది. ఇది జరిగినప్పుడు వాటి శక్తి మార్పులకు అనుగుణంగా కాంతి వెలువడటం లేదా శోషింపబడుతూ ఉంటుంది. బోర్ నమూనా అంత పటిష్ఠమైన సిద్ధాంతమేమీ కాదు. ఇది హైడ్రోజన్ వర్ణపటాన్ని మాత్రమే వివరించగలిగింది. బహుళ ఎలక్ట్రాన్లు కలిగిన పరమాణు వర్ణపటాలను వివరించలేకపోయింది. వర్ణపటాల సాంకేతికత అభివృద్ధి చెందిన కొద్దీ హైడ్రోజన్ వల్ల విడుదలైన మరికొన్ని వర్ణరేఖలను బోర్ నమూనా వివరించలేకపోయింది. 1916లో ఆర్నాల్డ్ సోమర్ ఫీల్డ్, బోర్ పరమాణు నమూనాలో అండాకార కక్ష్యలతో ప్రతిక్షేపించి అదనంగా వస్తున్న వర్ణపట రేఖలను వివరించడానికి ప్రయత్నించాడు. కానీ దీని వల్ల ఈ నమూనాని వాడటం మరింత కష్టతరమైంది. ఇంకా క్లిష్టమైన పరమాణువులను ఇది వివరించలేకపోయింది.

1913లో ఫ్రెడెరిక్ సోడీ అనే రేడియో కెమిస్టు రేడియోధార్మిక క్షయం ఉత్పత్తుల గురించి పరిశోధన చేస్తుండగా ఆవర్తన పట్టికలో ఒక్కో స్థానంలో రెండు మూలకాలు ఉండే అవకాశం ఉండవచ్చునని కనుగొన్నాడు. ఈ రకమైన మూలకాలకు ఐసోటోపులు అని పేరు పెట్టింది మార్గరెట్ టాడ్ అనే శాస్త్రవేత్త. అదే సంవత్సరంలో నియాన్ అయాన్లను అయస్కాంత, విద్యుత్ ఆవరణాల గుండా పంపించి అవతలివైపున ఛాయాగ్రాహక దర్పణాలను తాకేలా జె. జె. థామ్సన్ ఒక ప్రయోగం చేశాడు. ఈ ప్రయోగంలో దర్పణం మీద రెండు వెలుగు చిన్నెలు కనిపించాయి. ఇవి రెండు రకాలైన విక్షేపాలకు నిదర్శనం. నియాన్‌లో కొన్ని వేర్వేరు ద్రవ్యరాశులు కలిగిన అయాన్లు ఉండటం ద్వారానే ఇది సాధ్యమైందని థామ్సన్ నిర్ధారించాడు. 1932లో న్యూట్రాన్లను కనుగొన్నపుడు ఈ వేర్వేరు ద్రవ్యరాశులు ఎందుకు ఉంటాయో వివరించే వీలు కలిగింది.

1917లో ఎర్నెస్ట్ రూథర్ ఫోర్డ్ నైట్రోజన్ వాయువును ఆల్ఫా కణాలతో తాడనం చేయడం ద్వారా హైడ్రోజన్ కేంద్రకాలు వెలువడటం గమనించాడు. అంతకు ముందే రూథర్ ఫోర్డ్ హైడ్రోజన్ వాయువును ఆల్ఫా కణాలచే తాడనం చేసినప్పుడు హైడ్రోజన్ కేంద్రకాలు వెలువడటం గమనించి ఉన్నాడు. దీన్ని బట్టి నైట్రోజన్ పరమాణువుల నుంచి హైడ్రోజన్ కేంద్రకాలు వెలువడ్డాయని నిర్ధారించాడు. (ఇంకోరకంగా చెప్పాలంటే అతను నైట్రోజన్‌ను విడగొట్టగలిగాడు). తన స్వంత పరిశోధనలు, అతని విద్యార్థులైన బోర్, హెన్రీ మోసిలీ మొదలైన విద్యార్థులు చేసిన పరిశోధనల ద్వారా ఏ పరమాణువు ధనావేశాన్నైనా హైడ్రోజన్ పరమాణు కేంద్రకాల సంఖ్యతో కొలవచ్చని రూదర్‌ఫోర్డ్ కనుగొన్నాడు. మరొక పరిశోధన ప్రకారం చాలా మూలకాల పరమాణు ద్రవ్యరాశి అప్పటిదాకా అత్యంత తేలికైన కణాలుగా భావిస్తున్న హైడ్రోజన్ పరమాణువుల సంఖ్యతో లెక్కించవచ్చు. ఈ రెండింటినీ సమన్వయం చేస్తే, హైడ్రోజన్ కేంద్రకాలు ఏకకణాలుగా ఉంటాయనీ అణుకేంద్రకంలో అతి ప్రాముఖ్యమైనవనీ నిర్ధారించబడింది. ఈ కణాలను ప్రోటాన్లు అని అభివర్ణించాడు. ఇంకా ప్రయోగాలు చేయగా చాలా అణు కేంద్రకాల ద్రవ్యరాశి వాటిలో ఉన్న ప్రోటాన్ల ద్రవ్యరాశి కన్నా ఎక్కువగా ఉన్నట్లు గుర్తించాడు. కాబట్టి ఈ అదనపు ద్రవ్యరాశి కేంద్రకంలో తటస్థ కణాలకు సంబంధించినదై ఉంటుందనీ, వాటిని న్యూట్రాన్లు అనుకోవచ్చని భావించాడు.

1928లో వాల్టర్ బోత్ బెరీలియం అనే మూలకాన్ని ఆల్ఫా కణాలతో తాడనం చేయడం ద్వారా బాగా చొచ్చుకుపోయే ఎటువంటి విద్యుదావేశం లేని కిరణాలు ఉత్పన్నం కావడం గమనించాడు. తర్వాత ఈ కిరణాలు పారాఫిన్ మైనం నుంచి హైడ్రోజన్ పరమాణువులను బయటికి వెళ్ళగొట్టడం గమనించాడు. మొదటగా దీనిని శక్తివంతమైన గామా కిరణాలుగా భావించారు ఎందుకంటే గామా కిరణాలు కూడా లోహాలలోని ఎలక్ట్రాన్ల మీద ఇలాంటి ప్రభావాన్నే చూపించాయి. కానీ జేమ్స్ చాడ్విక్ అనే శాస్త్రవేత్త మాత్రం అలా కావడానికి వీల్లేదని అభిప్రాయ పడ్డాడు. 1932లో హైడ్రోజన్, నైట్రోజన్ లాంటి వివిధ మూలకాలను బెరీలియం రేడియేషన్‌కు గురయ్యేలా చేశాడు. ఈ ప్రయోగంలో వెలువడిన రేడియేషన్‌ను పరిశీలించి, తటస్థమైన విద్యుదావేశం, ప్రోటాన్లతో సమానమైన ద్రవ్యరాశి కలిగిన మరో కణాలు ఉన్నాయని నిర్ధారించాడు. ఇవే రూథర్ ఫోర్డ్ అభిప్రాయపడిన న్యూట్రాన్లు అని నిర్ధారించాడు. న్యూట్రాన్లను కనుగొన్నందుకు గాను 1935లో చాడ్విక్‌కు నోబెల్ బహుమతి లభించింది.

నియాన్ పరమాణువులో శక్తిస్థాయి ఆరోహణా క్రమంలో ఎడమ నుంచి కుడికి అమర్చిన నిండిన పరమాణు కక్ష్యలు. ఆఖరి మూడు స్థాయిల శక్తి సమానం. ప్రతి కక్ష్యలో రెండు ఎలక్ట్రాన్లు పడతాయి. 1924లో లూయిస్ డీబ్రోగ్లీ అన్ని కదిలే కణాలు ముఖ్యంగా పరమాణువు లోపల ఉండే ఎలక్ట్రాన్ల వంటివి కొంతమేరకు తరంగ స్వభావాన్ని ప్రదర్శిస్తాయని ప్రతిపాదించాడు. ఎర్విన్ ష్రోడింగర్‌కు ఈ ఆలోచన నచ్చి పరమాణువు లోపల ఎలక్ట్రాన్ చలనాన్ని ఒక కణం లాగా కాకుండా తరంగం లానే భావించవచ్చేమోనని అన్వేషణ చేశాడు. 1926లో ఆయన ప్రచురించిన ష్రోడింగర్ సమీకరణం ఎలక్ట్రాన్‌ను ఒక బిందువులా కాక తరంగ ప్రమేయంగా వర్ణించింది. ఈ విధమైన వర్ణన బోర్ నమూనా వివరించలేకపోయిన వర్ణపటాల గురించి సరైన వివరణను ఇవ్వగలిగింది. ఈ భావన గణిత పరంగా సౌకర్యంగా ఉన్నా దీన్ని దృశ్యరూపంలో ఊహించుకోవడానికి కష్టం కాబట్టి ఇది కొంత వ్యతిరేకతకు లోనైంది. ఈ విమర్శకుల్లో ఒకరైన మాక్స్ బార్న్ ష్రోడింగర్ తరంగ ప్రమేయం ఎలక్ట్రాన్‌ని వివరించడం కాక, దాని ఉనికి లేదా స్థితిని వివరిస్తుందని, కాబట్టి అది, కేంద్రకం చుట్టూ ఉన్న ప్రదేశంలో ఏదో ఒకచోట ఉండటానికి గల సంభావ్యతను సూచించడానికి వాడవచ్చని ప్రతిపాదించాడు. ఈ ప్రతిపాదన ఎలక్ట్రాన్లు తరంగం లేదా కణం అని భావించే రెండు వ్యతిరేక వర్గాల మధ్య సయోధ్య కుదిర్చింది. అప్పుడే కణ తరంగ ద్వైత సిద్ధాంత భావన ప్రవేశపెట్టడం జరిగింది. ఈ సిద్ధాంతం ప్రకారం ఎలక్ట్రాన్ ఒక తరంగం గానూ, లేదా కణంగానూ ప్రవర్తించవచ్చు.

ఉదాహరణకు అది తరంగం వలె వక్రీభవనం చెందవచ్చు. కణంలాగా ద్రవ్యరాశి కలిగి ఉండవచ్చు. ఎలక్ట్రాన్లను తరంగం అని భావించడంతో, దాని పర్యవసానంగా దాని స్థానం, త్వరణం రెంటినీ ఒకేసారి గణితపరంగా ఉత్పాదించే అవకాశం లేకపోయింది. ఇదే వెర్నర్ హైసెన్ బర్గ్ 1927లో మొదటిసారిగా వివరించి ప్రచురించిన హైసెన్ బర్గ్ అనిశ్చితత్వ నియమం. ఈ సిద్ధాంతం, పరమాణువు లోపల వలయాకార కక్ష్యలను స్పష్టంగా నిర్వచించి బోర్ నమూనాను తోసిరాజంది. పరమాణువు కక్ష్య సిద్ధాంతం (ఆర్బిటాల్ థియరీ ఇదే ఆధునిక పరమాణు సిద్ధాంతం) పరమాణువులోని ఎలక్ట్రాన్ల స్థానాలను సంభావ్యతల పరంగా వివరించింది. ఎలక్ట్రాను, కేంద్రకం నుంచి ఎంత దూరంలో అయినా ఉండవచ్చు. కానీ దాని శక్తి స్థాయిని బట్టి, కొన్ని ప్రాంతాల్లో ఉండే అవకాశం ఎక్కువగా ఉంటుంది. ఈ విధమైన నిర్మాణ క్రమాన్ని పరమాణు కక్ష్య (ఆర్బిటాల్) అని అన్నారు. ఈ కక్ష్యలు గోళం, డంబెల్, టారస్ వంటి వివిధ ఆకారాల్లో ఉండవచ్చు. ఈ ఆకారాల మధ్యలో కేంద్రకం ఉంటుంది.